Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Renesas Technology Home Page: http://www.renesas.com Renesas Technology Corp. Customer Support Dept. April 1, 2003 #### **Cautions** Keep safety first in your circuit designs! Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. #### Notes regarding these materials - 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. - 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. - 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). - 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. - 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. - 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. - 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. - 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. ## MOS FET Power Amplifier Module for E-GSM and DCS1800 Dual Band Handy Phone ADE-208-821C (Z) Rev.3 Feb. 2001 #### **Application** - Dual band Amplifier for E-GSM (880 MHz to 915 MHz) and DCS1800 (1710 MHz to 1785 MHz) - For 3.5 V nominal battery use #### **Features** - 2 in / 2 out dual band amplifire - Simple external circuit including output matching circuit - High gain 3stage amplifier: 0 dBm input Typ - Lead less thin & Small package : $11 \times 13.75 \times 1.8$ mm Typ - High efficiency: 50% Typ at nominal output power for E-GSM 43% Typ at 32.7 dBm for DCS1800 #### Pin Arrangement ## **Absolute Maximum Ratings** $(Tc = 25^{\circ}C)$ | Item | Symbol | Rating | Unit | | | |----------------------------|--------------------|-------------|------|--|--| | Supply voltage | Vdd | 8 | V | | | | Supply current | Idd _{GSM} | 3 | Α | | | | | Idd _{DCS} | 2 | Α | | | | Vtxlo voltage | Vtxlo | 4 | V | | | | Vapc voltage | Vapc | 4 | V | | | | Input power | Pin | 10 | dBm | | | | Operating case temperature | Tc (op) | −30 to +100 | °C | | | | Storage temperature | Tstg | −30 to +100 | °C | | | | Output power | Pout GSM | 5 | W | | | | | Pout DCS | 3 | W | | | Note: The maximum ratings shall be valid over both the E-GSM-band (880 MHz to 915 MHz), and the DCS1800-band (1710 MHz to 1785 MHz). ## **Electrical Characteristics for DC** $(Tc = 25^{\circ}C)$ | Item | Symbol | Min | Тур | Max | Unit | Test Condition | |-----------------------|--------|-----|-----|-----|------|-----------------------| | Drain cutoff current | lds | _ | _ | 100 | μΑ | Vdd = 8 V, Vapc = 0 V | | Vapc control current | lapc | _ | _ | 3 | mA | Vapc =2.2 V | | Vtxlo control current | Itxlo | _ | | 100 | μΑ | Vtxlo = 2.4 V | #### **Electrical Characteristics for E-GSM mode** $(Tc = 25^{\circ}C)$ Test conditions unless otherwise noted: f = 880 to 915 MHz, Vdd $_{\text{\tiny GSM}}$ = 3.5 V, Pin $_{\text{\tiny GSM}}$ = 0 dBm, Rg = Rl = 50 $\Omega,$ Tc = 25°C, Vapc $_{\text{\tiny DCS}}$ = 0.1 V Pulse operation with pulse width 577 μs and duty cycle 1:8 shall be used. | Item | Symbol | Min | Тур | Max | Unit | Test Condition | | |---|-----------------------------------|--------------------------|------|-----|------|--|--| | Frequency range | f | 880 | _ | 915 | MHz | | | | Total efficiency (Hi) | $\eta_{\text{T(Hi)}}$ | 41 | 50 | _ | % | Pout _{GSM} = 35.5dBm, Vtxlo = 0.1V,
Vapc _{GSM} = controlled | | | 2nd harmonic distortion | 2nd H.D. | _ | -45 | -38 | dBc | | | | 3rd harmonic distortion | 3rd H.D. | _ | -45 | -40 | dBc | - | | | Input VSWR | VSWR (in) | _ | 1.5 | 3 | _ | • | | | Total efficiency (Lo) | $\eta_{\scriptscriptstyle T(Lo)}$ | 27 | 35 | _ | % | Pout $_{\text{GSM}}$ = 30.8dBm, Vtxlo = 2.4V, Vapc $_{\text{GSM}}$ = controlled | | | Output power (1)(Hi) | Pout (1)(Hi) | 35.5 | 36.0 | _ | dBm | Vapc $_{GSM} = 2.2V$, VtxIo = 0.1V | | | Output power (1)(Lo) | Pout (1)(Lo) | 30.8 | 31.3 | _ | dBm | Vapc _{GSM} = 2.2V, Vtxlo = 2.4V | | | Output power (2)(Hi) | Pout (2)(Hi) | 33.5 | 34.0 | _ | dBm | $Vdd_{_{GSM}} = 3.0V, Vapc_{_{GSM}} = 2.2V,$ $Tc = +85^{\circ}C, Vtxlo = 0.1V$ | | | Output power (2)(Lo) | Pout (2)(Lo) | 28.8 | 29.3 | _ | dBm | $Vdd_{_{GSM}} = 3.0V, Vapc_{_{GSM}} = 2.2V,$ $Tc = +85^{\circ}C, Vtxlo = 2.4V$ | | | Isolation | _ | _ | -42 | -36 | dBm | Vapc _{GSM} = 0.2V, Vtxlo = 0.1V | | | Isolation at DCS RF-output when GSM is active | _ | _ | -23 | -17 | dBm | Pout _{GSM} = 35.5dBm, Vtxlo = 0.1V
Measured at f = 1760 to 1830MHz | | | Switching time | t,, t, | _ | 1 | 2 | μS | Pout _{GSM} = 0 to 35.5dBm,
Vtxlo = 0.1V | | | Stability | _ | No parasitic oscillation | | | _ | $\begin{array}{l} \text{Vdd}_{_{\text{GSM}}} = 3.0 \text{ to } 5.1 \text{V}, \\ \text{Pout}_{_{\text{GSM}}} \leq 35.5 \text{dBm}, \text{ Vtxlo} = 0.1, 2.4 \text{V}, \\ \text{Vapc}_{_{\text{GSM}}} \leq 2.2 \text{V}, \text{ GSMpulse. Rg} = 50 \Omega, \\ \text{Output VSWR} = 6:1 \text{ All phases} \end{array}$ | | | Load VSWR tolerance | _ | No degradation | | | _ | $\begin{aligned} &\text{Vdd}_{\text{\tiny GSM}} = 3.0 \text{ to } 5.1\text{V, t} = 20\text{sec.,} \\ &\text{Pout}_{\text{\tiny GSM}} \leq 35.5\text{dBm, Vtxlo} = 0.1, 2.4\text{V,} \\ &\text{Vapc}_{\text{\tiny GSM}} \leq 2.2\text{V, GSM pulse. Rg} = 50\Omega, \\ &\text{Output VSWR} = 10:1 \text{ All phases} \end{aligned}$ | | #### **Electrical Characteristics for DCS1800 mode** $(Tc = 25^{\circ}C)$ Test conditions unless otherwise noted: f = 1710 to 1785 MHz, Vdd $_{DCS}$ = 3.5 V, Pin $_{DCS}$ = 0 dBm, Rg = Rl = 50 Ω , Tc = 25°C, Vapc $_{GSM}$ =0.1 V Pulse operation with pulse width 577 μs and duty cycle 1:8 shall be used. | Item | Symbol | Min | Тур | Max | Unit | Test Condition | |---|-----------------------------------|----------------------------|------|------|------|---| | Frequency range | f | 1710 | _ | 1785 | MHz | | | Total efficiency (Hi) | $\eta_{\scriptscriptstyle T(Hi)}$ | 36 | 43 | _ | % | Pout DCS = 32.7dBm, Vapc DCS = controlled | | 2nd harmonic distortion | 2nd H.D. | _ | -45 | -38 | dBc | | | 3rd harmonic distortion | 3rd H.D. | _ | -45 | -40 | dBc | | | Input VSWR | VSWR (in) | _ | 1.5 | 3 | _ | - | | Total efficiency (Lo) | $\eta_{\scriptscriptstyle T(Lo)}$ | 17 | 25 | _ | % | Pout DCS = 26.7dBm,
Vapc DCS = controlled | | Output power (1) | Pout (1) | 32.7 | 33.2 | _ | dBm | Vapc _{DCS} = 2.2V, | | Output power (2) | Pout (2) | 30.7 | 31.2 | _ | dBm | Vdd $_{DCS}$ = 3.0V, Vapc $_{DCS}$ = 2.2V, Tc = +85°C | | Isolation | _ | _ | -42 | -36 | dBm | Vapc _{DCS} = 0.2V | | Isolation at GSM RF-output when DCS is active | _ | _ | -10 | 0 | dBm | Pout _{DCS} = 32.7dBm,
Measured at f = 1710 to 1785MHz | | Switching time | t _r , t _f | _ | 1 | 2 | μS | Pout _{DCS} = 0 to 32.7dBm | | Stability | _ | No parasitic oscillation — | | | _ | $\begin{aligned} &\text{Vdd}_{\text{DCS}} = 3.0 \text{ to } 5.1 \text{V}, \\ &\text{Pout}_{\text{DCS}} \leq 32.7 \text{dBm, Vapc}_{\text{DCS}} \leq 2.2 \text{V}, \\ &\text{DCS pulse. Rg} = 50\Omega, \\ &\text{Output VSWR} = 6:1 \text{ All phases} \end{aligned}$ | | Load VSWR tolerance | _ | No degradation | | | _ | $\begin{aligned} &\text{Vdd}_{\text{DCS}} = 3.0 \text{ to } 5.1 \text{V}, \\ &\text{Pout}_{\text{DCS}} \leq 32.7 \text{dBm, t} = 20 \text{sec.,} \\ &\text{Vapc}_{\text{DCS}} \leq 2.2 \text{V, DCS pulse. Rg} = 50 \Omega, \\ &\text{Output VSWR} = 10:1 \text{ All phases} \end{aligned}$ | #### **Characteristic Curves** ### **Package Dimensions** #### Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials - Notes regarding mese materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation before purchasing a product listed herein. - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page - (http://www.renesas.com). - (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. http://www.renesas.com